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Abstract

We put forward a new framework that makes it possible to re-write and/or compress
the content of any number of blocks in decentralized services exploiting the blockchain
technology. As we argue, there are several reasons to prefer an editable blockchain, spanning
from the necessity to remove improper content and the possibility to support applications
requiring re-writable storage, to “the right to be forgotten”.

Our approach generically leverages so-called chameleon hash functions (Krawczyk and
Rabin, NDSS ’00), which allow to efficiently determine hash collisions given a secret trap-
door information. We detail how to integrate a chameleon hash function in virtually any
blockchain-based technology, for both cases where the power of redacting the blockchain
content is in the hands of a single trusted entity and where such a capability is distributed
among several distrustful parties (as is the case in Bitcoin).

We also report on a proof-of-concept implementation of a redactable blockchain, building
on top of Nakamoto’s Bitcoin core. The implementation only requires minimal changes
to the way current client software interprets information stored in the blockchain and to
the current blockchain, block, or transaction structures. Moreover, our experiments show
that the overhead imposed by a redactable blockchain is small compared to the case of an
immutable one.
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1 Introduction

The cost of the bankruptcy of Lehman Brothers in 2008 to the United States is estimated
in trillions [U.S13] and triggered a chain of events that sent several countries into economic
recession or depression. One contributor to the crisis was the centralized payment and monetary
system based on clearinghouses that act as intermediaries between buyers and sellers and take
on the risk of defaults. Unfortunately, clearinghouses add a significant cost to any interbank
transactions and do not always operate transparently.

Bitcoin is an innovative technology that may allow banks to settle accounts between them-
selves without relying on centralized entities. It is considered the first decentralized currency
system that works on a global scale. It relies on cryptographic proofs of work, digital signatures,
and peer-to-peer networking to provide a distributed ledger (called the blockchain) containing
transactions. Digital currency is, however, the simplest application of the blockchain technol-
ogy. Bitcoin includes a scripting language that can be used to build more expressive “smart
contracts,” basically cryptographically-locked boxes that can be opened if certain conditions are
verified. In addition, transactions can store arbitrary data via the OP RETURN mechanism.

The blockchain technology promises to revolutionize the way we conduct business. Blockchain
startups have received more than $1bn [Coi] of venture capital money to exploit this technology
for applications such as voting, record keeping, contracts, etc. Conventional services are cen-
tralized and do not scale well. The blockchain allows services to be completely decentralized.
There is no need to rely on, or trust, a single organization. It is a disruptive technology that will
change the way money, assets and securities are currently managed. Business agreements can
be encoded as smart contracts which in turn can handle automatically their executions along
with the arbitration of disputes, thus reducing cost and providing more transparency. From a
technology point of view, the blockchain is equally revolutionary. It provides for the first time a
probabilistic solution to the Byzantine generals problem, where consensus is reached over time
(after confirmations), and makes use of economic incentives to secure the overall infrastructure.

Two approaches have emerged to facilitate the use of the blockchain technology to implement
decentralized services and applications (what is referred to as Bitcoin 2.0). The first “overlay”
approach is to rely on the existing Bitcoin blockchain and build a new framework on top of
it. This is done through transactions with OP RETURN outputs which are unspendable and
do not need to be stored in the UTXO database. The rationale of this approach is that the
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Bitcoin blockchain already exists and is adopted by many, which makes it inherently more
secure and resilient. However, certain constraints and constants set by the creator of Bitcoin
(Satoshi) impede some (but not all) applications. For instance, blocks are mined every 10
minutes on average and the Bitcoin scripting language is not Turing-complete. This works
perfectly for the currency, but forces other applications to get around these limitations through
cumbersome hacks. The second approach is to build an alternative blockchain with all the
desired features. This approach is gathering momentum (see, e.g, Ethereum [Eth]), and promises
full decentralization. It enables very expressive smart contracts that achieve a high degree of
automation.

1.1 Motivation

The append-only nature of the blockchain is essential to the security of the Bitcoin ecosystem.
Transactions are stored in the ledger forever and are immutable. This fits perfectly with the
currency system. However, we argue that an immutable ledger is not appropriate for all new
applications that are being envisaged for the blockchain. Whether the blockchain is used to
store data or code (smart contracts), there must be a way to redact its content in specific and
exceptional circumstances. Redactions should be performed only under strict constraints, and
with full transparency and accountability. Some examples where a redactable blockchain is
desirable are outlined below.

(i) The ability to store arbitrary messages has already been abused, and now the Bitcoin
blockchain contains child pornography, improper content, and material that infringes on intel-
lectual rights (see e.g., [Hop, Pea, HC]). The intent of these abuses is to disrupt the Bitcoin
system, since users may not be willing to participate and download the blockchain for fear of
being prosecuted for possession of illegal or improper content on their computers. There are
currently only 8-10K full nodes that store the entire blockchain and if this number declines,
the Bitcoin ecosystem may be severely disrupted. In addition, improper content (gossip, pic-
tures, etc.) may affect the life of people forever if it is not removed from the blockchain. Thus,
appending new information is not an option in these cases.

(ii) Bitcoin 2.0 applications require re-writable storage. Smart contracts and overlay appli-
cations may not work or scale if the blockchain is immutable. A smart contract is essentially a
sequence of instructions that a miner is going to run in exchange for a compensation. Amend-
ing a contract or patching code, by appending a new version of it, does not scale and wastes
precious resources.

(iii) Is our society ready for permanent storage or perfect accountability? We believe it is
not and indeed much effort is spent to promote the “right to be forgotten.” New blockchain
applications promise to store files, notarize documents, manage health records, coordinate IoT
devices, administer assets, etc. But records should be expunged in case they contain errors or
sensitive information, or when it is required by law. Even encryption may not help as keys are
notoriously difficult to manage and are often leaked.

(iv) Several financial institutions are exploring the benefits of blockchain-based solutions to
reduce cost and increase trust in interbank interactions. Budgets, transactions, and financial
results are routinely consolidated to create meaningful reports while allowing entities to maintain
distinct accounting structures. Consolidation is difficult to achieve with immutable blockchains,
since it is impossible to consolidate past transactions without affecting any subsequent blocks.

1.2 Our Contributions

We propose an approach to make the blockchain redactable; by redaction we mean one of the fol-
lowing actions (and any combination of those): re-writing one or more blocks, compressing any
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number of blocks into a smaller number of blocks, and inserting one or more blocks. Redactions
can be made only by authorized entities and under specific constraints; moreover redactions are
publicly auditable by existing miners, since they must approve the new blockchain and have
access to its old copies. However, new miners are oblivious, given that the blockchain in our
design is implemented as a history-independent data structure in the sense introduced by Naor
and Teague [NT01]. That is, no information can be deduced about the past from the current
view of the blockchain (also called anti-persistence in [NT01]).

Bi−1 Bi Bi+1. . . . . .µµ

Bi−1 Bi Bi+1. . . . . .bµ

Bi−1 B′i Bi+1. . . . . .µµ

Figure 1: Redaction operations on a redactable
blockchain. In the top blockchain, all padlocks are locked
resulting in an immutable blockchain. In the middle
blockchain, the padlock from block Bi+1 to block Bi
is open, meaning that the content of block Bi can be
redacted. In the bottom blockchain, the block Bi was
redacted (resulting in block B′i) and all the padlocks are
once again locked, making the blockchain immutable.

All blockchain designs rely on a
hash chain that connects each block
to the previous one, to create an im-
mutable sequence. The immutabil-
ity comes from the collision resis-
tance property of the hash function.
The best way to grasp the concept of
a redactable blockchain is to think of
adding a lock to each link of the hash
chain (see Figure 1): Without the
lock key it is hard to find collisions
and the chain is immutable, but
given the lock key it is possible to
efficiently find collisions and thus re-
place the content of any block in the
chain. With the knowledge of the
key, any reduction is then possible:
deletion, modification, and insertion
of any number of blocks. Note that
if the lock key is lost or destroyed,
then a redactable blockchain reverts

to an immutable one.
The main idea of our design is to employ a special hash function that is collision-resistant

unless a trapdoor is known. This special hash is an evolution of a standard chameleon hash.
Indeed, in a standard chameleon hash, collisions must be kept private since the trapdoor can
be extracted from a single collision. In our improved design, it is safe to reveal any number of
collisions.

Our contributions include:

• A new design for a redactable blockchain which is compatible with all popular blockchain
proposals (cf. Section 3). Our blockchain is history-independent in the sense introduced
by Naor and Teague [NT01]. The main feature of our system is that it is compatible with
current blockchain designs, i.e., it can be implemented right now and requires only minimal
changes to the way current client software interprets information stored in the blockchain
(more on this later), and to the current blockchain, block, or transaction structures. We
believe compatibility is an important feature that must be preserved.
• Improved chameleon hash design (cf. Section 4). Traditional chameleon hashes have the

key exposure problem as observed in [AdM04], except the scheme proposed in [AdM04],
but which relies on the generic group model. It was left open to find similarly enhanced
chameleon hashes in the standard model. We first generalize the definition of chameleon
hash to make it more relevant in practice, and then provide new constructions in the
standard model through a generic transformation.
• Implementation (cf. Section 5). We developed a redactable blockchain prototype on top
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of the Bitcoin core. We ran experiments where several blocks were modified or removed
from a Bitcoin blockchain, thus showing the feasibility of our approach.

1.3 Remarks

Proposing to affect the immutability of the blockchain may seem an ill-conceived concept given
the importance of the append-only nature of the blockchain. However, hard forks exist that can
be used to undo recent transactions. As for hard forks, we expect redactions to occur in rare
and exceptional circumstances.

Why not applying a hard fork in the past? Hard forks can be seen as the Undo operation
and thus they make sense only for recently mined blocks. Imagine making a hard fork for a
block added to the blockchain, say, 5 years ago. All subsequent blocks will be rendered invalid
and all transactions from 5 years ago till now will have to be reprocessed. Thus, regenerating
the blockchain will take another 5 years assuming similar mining power.

Would this redaction mechanism make sense for Bitcoin? We target Bitcoin 2.0 ap-
plications but we believe Bitcoin can also benefit from our solution. Consider this trivial but
effective attack against Bitcoin. (i) Divide objectionable content (e.g., child or revenge pornog-
raphy, sensitive or private information, etc.) in packets as it is done with TCP/IP. (ii) Store
each packet within the OP RETURN field of several Bitcoin transactions. (iii) After several
blocks are mined, release a simple script or provide a web page where the improper content can
be reconstructed as with TCP/IP packets. (iv) Wait for a lawsuit to be filed. If (when) this
happens, then Bitcoin could be legally shut down and the blockchain removed for good. Notice
that access to content on the Internet can be controlled, filtered out, or made it hard to find.
On the other end, content in the blockchain must always be available and stored locally at each
node.

Who can make redactions? We show how to make redactions given the knowledge of a
secret key. This key could be in the hands of miners, a centralized auditor, or shares of the key
could be distributed among several authorities. The actual way the trapdoor key is managed
depends upon the requirements of specific applications; while we provide some examples (see
Section 3.5), we stress that those are just a few possibilities out of many.

Why can’t the blockchain be edited “by fiat”, relying on meta-transactions? It is
possible to create a block revocation list that miners are instructed to check and avoid. The
problem however is that old blocks will still be there with the information that was supposed
to be redacted. Thus, this approach is pointless. Another variant is to actually remove blocks,
creating “holes” in the blockchain, and instruct miners to ignore those blocks. This approach
is even worse since the blockchain is not valid anymore and exceptions must be hardcoded in
the software of each miner or made available as an authenticated blacklist.

Couldn’t the set of miners “vote” by their power, “sign” the new block and insert
it into the correct position? No, because this is essentially a hard fork and all subsequent
blocks will be invalid. Punching the blockchain makes it invalid and can only be handled as
described in the previous point.
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If trusted authorities can redact the blockchain, can’t you get rid of PoW-based
consensus? Redactions, as hard forks, are supposed to happen very rarely, in case of emergen-
cies (e.g., the DAO attack) or when sensitive information is leaked (e.g., revenge porn). Editors
do not operate daily but only in exceptional circumstances. They do not have the ability to run
or maintain a blockchain. Trusted authorities could be individuals, such as judges or arbitra-
tors, or/and organizations, such as the International Monetary Fund (IMF), the World Trade
Organization (WTO), Electronic Frontier Foundation (EFF), INTERPOL, etc. They are not
meant to operate blockchain infrastructures (as a simple analogy, consider that the Securities
and Exchange Commission (SEC) is not meant to run stock and options exchanges or electronic
securities markets but to intervene to enforce federal securities laws). Thus, we must rely on
PoW-based consensus to run the blockchain.

Are these trusted authorities the same as in permissioned blockchain? Not neces-
sarily. In permissioned blockchain only specified actors (banks, financial operators, individuals,
etc.) can participate and post transactions. Some or all of these actors could be allowed to
redact the blockchain if they collaborate. Shares of the chameleon hash key could be distributed
among them so that the key is reconstructed when shares are pooled together according to some
access control structure.

Could redactions have helped with the DAO attack? The DAO attack was resolved
with a hard fork. Technically there is no substantial difference between hard forks and redactions
for recent events. Our solution would help in case frauds or unintended errors are discovered
much later, when it is too late to apply a hard fork and efficiently rebuild the blockchain.

Is blockchain immutability a chimera? The aftermath of the DAO attack shows that
immutability is contentious (DAO is dead, lawsuits are looming, two parallel chains ETH/ETC
were created, the future of Ethereum is in question, etc.). Other than affecting privacy (see [Ten]),
immutability also affects scalability (see [DeR]). Our primary intent is to provide a technical
answer to the question: “How can I make a redactable blockchain?”. However, we do believe im-
mutability of the blockchain should be reconsidered if Bitcoin 2.0 applications are to be turned
from lab experiments to real deployments.

1.4 Related Work

Several papers have analyzed the properties and extended the features of the Bitcoin protocol
(see, e.g., [ADMM14b, AFMdM14, ADMM15, PS15]). Bitcoin has also found several inno-
vative applications far beyond its initial scope, e.g., to achieve fairness in secure multi-party
computation [ADMM14c, ADMM14a, BK14], to build smart contracts [KMS+15, BDM16],
to distributed cryptography [AD15], and more [KMB15, KT15, RKS15]. Blockchain based
technologies, and the properties they achieve, were also studied in recent work, both for the
synchronous [GKL15] and asynchronous [PSas16] network model.

1.5 Roadmap

We start by introducing some standard notation in Section 2. Then, we explain how to in-
tegrate chameleon hash functions into current blockchain-based technologies with the purpose
of creating a redactable blockchain, in Section 3. Section 4 contains the details of our generic
transformation yielding chameleon hash functions with key-exposure freeness. In Section 5, we
comment on a proof-of-concept implementation deploying our framework within Bitcoin. We
finally give some directions for future research, in Section 6.
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s′ = H(ctr, G(s, x; r))

HashPrev (s)

Transactions (x)

Nonce (ctr)

Randomness (r)

s′′ = H(ctr′, G(s′, x′; r′))

HashPrev (s′)

Transactions (x′)

Nonce (ctr′)

Randomness (r′)

s′′′ = H(ctr′′, G(s′′, x′′; r′′))

HashPrev (s′′)

Transactions (x′′)

Nonce (ctr′′)

Randomness (r′′)

Figure 2: The redactable blockchain structure (using a public-coin chameleon hash). The field
s of a block stores the value shown in the top white field of the previous block. We note that
the top white field is not stored in the block. The bottom darker field (Randomness) is updated
when the block is redacted (i.e., a collision is computed).

2 Notation

For a string x, we denote its length by |x|; if X is a set, |X | represents the number of elements
in X . When x is chosen randomly in X , we write x←$ X . When A is an algorithm, we write
y←$ A(x) to denote a run of A on input x and output y; if A is randomized, then y is a
random variable and A(x; r) denotes a run of A on input x and randomness r. An algorithm A
is probabilistic polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in at most poly(|x|) steps.

We denote with κ ∈ N the security parameter. A function ν : N→ [0, 1] is negligible in the
security parameter (or simply negligible) if it vanishes faster than the inverse of any polynomial
in κ, i.e. ν(κ) = κ−ω(1).

For a random variable X, we write P [X = x] for the probability that X takes on a particular
value x ∈ X (where X is the set where X is defined). Given two ensembles X = {Xκ}κ∈N and
Y = {Yκ}κ∈N, we write X ≡ Y to denote that the two ensembles are identically distributed,
and X ≈c Y to denote that they are computationally indistinguishable.

3 Redacting the Blockchain

In this section we introduce our framework, explaining how to modify current blockchain tech-
nologies in order to obtain a redactable blockchain. We start with a brief description of a
blockchain abstraction, due to Garay, Kiayias and Leonardos [GKL15], in Section 3.1. In Sec-
tion 3.2 we recall the concept of chameleon hash functions. We then put forward two new
algorithms that can be used to re-write the content of the blockchain, both in the central-
ized setting where a trusted party is in charge of rewriting the blocks (in Section 3.3) and in
the decentralized setting where no such trusted party is available (in Section 3.4). Finally, in
Section 3.5, we comment on how the chameleon hash keys can be managed in a few concrete
scenarios.

3.1 Blockchain Basics

We make use of the notation of [GKL15] to describe the blockchain. A block is a triple of the
form B = 〈s, x, ctr〉, where s ∈ {0, 1}κ, x ∈ {0, 1}∗ and ctr ∈ N. Block B is valid if

validblockDq (B) := (H(ctr , G(s, x)) < D) ∧ (ctr < q) = 1.

Here, H : {0, 1}∗ → {0, 1}κ and G : {0, 1}∗ → {0, 1}κ are collision-resistant hash functions, and
the parameters D ∈ N and q ∈ N are the block’s difficulty level and the maximum number of
hash queries that a user is allowed to make in any given round of the protocol, respectively.
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The blockchain is simply a chain (or sequence) of blocks, that we call C. The rightmost
block is called the head of the chain, denoted by Head(C). Any chain C with a head Head(C) :=
〈s, x, ctr〉 can be extended to a new longer chain C′ := C||B′ by attaching a (valid) block
B′ := 〈s′, x′, ctr ′〉 such that s′ = H(ctr , G(s, x)); the head of the new chain C′ is Head(C′) = B′.
A chain C can also be empty, and in such a case we let C = ε. The function len(C) denotes the
length of a chain C (i.e., its number of blocks). For a chain C of length n and any k ≥ 0, we
denote by Cdk the chain resulting from removing the k rightmost blocks of C, and analogously
we denote by keC the chain resulting in removing the k leftmost blocks of C; note that if k ≥ n
then Cdk = ε and keC = ε. If C is a prefix of C′ we write C ≺ C′. We also note that the difficulty
level D can be different among blocks in a chain.

The work of [GKL15] models the Bitcoin protocol in a setting where the number of partic-
ipants is always fixed and the network in synchronized. They show that the protocol satisfies
consistency in this model, meaning that all honest participants have the same chain prefix of
the blockchain. A more recent work by Pass, Seeman and shelat [PSas16] analyses the case
where the network is asynchronous and the number of participants can dynamically change.
We point that our framework is independent of the network type in these models.

3.2 Chameleon Hash Functions

The concept of chameleon hashing was put forward by Krawczyk and Rabin [KR00], building on
the notion of chameleon commitments [BCC88]. Informally, a chameleon hash is a cryptographic
hash function that contains a trapdoor: Without the trapdoor it should be hard to find collisions,
but knowledge of the trapdoor information allows to efficiently generate collisions for the hash
function.

Secret-coin hashing. We start by introducing a generalization of the standard concept of
chameleon hashing to make it more relevant in practice. Our generalization is referred to as
“secret-coin” and includes standard chameleon hashes as a special case (now referred to as
“public-coin”).

Definition 1 (Secret-coin chameleon hash). A secret-coin chameleon hash function is a tuple
of efficient algorithms CH = (HGen,Hash,HVer,HCol) specified as follows.

• (hk , tk)←$ HGen(1κ): The probabilistic key generation algorithm HGen takes as input the
security parameter κ ∈ N, and outputs a public hash key hk and a secret trapdoor key tk .
• (h, ξ)←$ Hash(hk ,m): The probabilistic hashing algorithm Hash takes as input the hash

key hk , a message m ∈M, and implicit random coins r ∈ Rhash, and outputs a pair (h, ξ)
that consists of the hash value h and a check string ξ.
• d = HVer(hk ,m, (h, ξ)): The deterministic verification algorithm HVer takes as input a

message m ∈M, a candidate hash value h, and a check string ξ, and returns a bit d that
equals 1 if (h, ξ) is a valid hash/check pair for the message m (otherwise d equals 0).
• π′←$ HCol(tk , (h,m, ξ),m′): The probabilistic collision finding algorithm HCol takes as

input the trapdoor key tk , a valid tuple (h,m, ξ), and a new message m′ ∈M, and returns
a new check string ξ′ such that HVer(hk ,m, (h, ξ)) = HVer(hk ,m′, (h, ξ′)) = 1. If (h, ξ) is
not a valid hash/check pair for message m then the algorithm returns ⊥.

Correctness informally says that a pair (h, ξ), computed by running the hashing algorithm,
verifies with overwhelming probability.

Definition 2 (Correctness for chameleon hashing). Let CH = (HGen,Hash,HVer,HCol) be a se-
cret-coin chameleon hash function with message spaceM. We say that CH satisfies correctness
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if for all m ∈M there exists a negligible function ν : N→ [0, 1] such that

P [HVer(hk ,m, (h, ξ)) = 1 : (h, ξ)←$ Hash(hk ,m); (hk , tk)←$ HGen(1κ)] ≥ 1− ν(κ).

Public-coin hashing. In the definition above the hashing algorithm is randomized, and,
upon input some message m, it produces a hash value h together with a check value ξ that helps
verifying the correct computation of the hash given the public hash key. The random coins of
the hashing algorithm are, however, secret. A particular case is the one where the check value ξ
consists of the random coins r used to generate h, as the hash computation becomes completely
deterministic once m and r are fixed; we call such a chameleon hash function public-coin and we
define it formally below. Since the verification algorithm simply re-runs the hashing algorithm,
we typically drop the verification algorithm from CH in the case of public-coin chameleon
hashing.

Definition 3 (Public-coin chameleon hash). A public-coin chameleon hash is a collection of ef-
ficient algorithms CH = (HGen,Hash,HVer,HCol) specified as in Definition 1, with the following
differences:

• The hashing algorithm Hash, upon input the hash key hk and message m ∈M, returns a
pair (h, r), where r ∈ Rhash denote the implicit random coins used to generate the hash
value.
• The verification algorithm HVer, given as input the hash key hk , message m, and a pair

(h, r), returns 1 if and only if Hash(hk ,m; r) = h.

Collision resistance. The main security property satisfied by a secret/public-coin chameleon
hash function is that of collision resistance: No PPT algorithm, given the public hash key hk ,
can find two pairs (m, ξ) and (m′, ξ′) that are valid under hk and such that m 6= m′, with
all but a negligible probability. Furthermore, for the applications we devise in this paper, it
is important that the above still holds even after seeing arbitrary collisions generated using
the trapdoor key tk corresponding to hk . We refer the reader to Section 4 for formal security
definitions, and for a generic construction achieving such a strong form of security.

3.3 Centralized Setting

The main idea behind our approach is to set the inner hash function (i.e., the function G), used
to chain the different blocks in the blockchain, to be a chameleon hash function. Intuitively,
re-writing the content of each block is possible by finding collisions in the hash function (without
modifying the outer hash function H). Below, we detail this idea in the simple setting where
only a single (trusted) central authority is able to redact the blockchain; see Section 3.5 for
concrete examples where this case applies.

In order for the above to work, we require some modifications to the previously defined
block. A block is now a tuple B := 〈s, x, ctr , (h, ξ)〉, where the components s, x and ctr are the
same as before, and the new component (h, ξ) is the hash/check pair for a chameleon hash. The
function G is defined to be a secret-coin chameleon hash CH = (HGen,Hash,HVer,HCol), and
the validation predicate for a block is now equal to

validblockDq (B) := (H(ctr , h) < D) ∧ (HVer(hk , (s, x), (h, ξ))) ∧ (ctr < q) = 1.

Given a chain C with head Head(C) := 〈s, x, ctr , (h, ξ)〉, we can extend it to a longer chain by
attaching a (valid) block B′ := 〈s′, x′, ctr ′, (h′, ξ′)〉 such that s′ = H(ctr , h).
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Notice that the domain of the chameleon hash can be easily adjusted to the proper size by
first hashing the input of Hash with a regular collision-resistant hash of the desired output size.
We also stress that the verification of a chameleon hash value needs to be computed by its own
verification function (i.e., by running HVer), and not simply by recomputing the hash, like it is
done with standard (deterministic) hash functions.

The case where the chameleon hash is public-coin can be cast as a special case of the above.
However, note that there is no need for storing the hash value h, as this value can be computed
as a deterministic function of the chameleon hash function’s input and randomness. Thus, in
this case, a block has a type B := 〈s, x, ctr , r〉, where r is the randomness for the chameleon
hash. The validation predicate for a block becomes

validblockDq (B) := (H(ctr ,Hash(hk , (s, x); r)) < D) ∧ (ctr < q) = 1.

Finally, given a chain C with head Head(C) := 〈s, x, ctr , r〉, we can extend it to a longer chain
by attaching a (valid) block B′ := 〈s′, x′, ctr ′, r′〉 such that s′ = H(ctr ,Hash(hk , (s, x); r)). See
Fig. 2 for a pictorial representation.

Rewriting blocks. Next, we define a chain redacting algorithm (see Algorithm 1 below) that
takes as input a chain C to be redacted, a set of indices that represents the positions (in the
chain C) of the blocks that are going to be redacted, and another set with the new x′’s values
for each of the blocks to be redacted. The algorithm also takes as input the chameleon hash
trapdoor key tk . The intuition behind it is that, for each block to be redacted, we compute a
collision for the hash of the block with its new content x′. A new chain C′ is created by replacing
the original block with its modified counterpart. We note that at the end of the execution of
Algorithm 1, the central authority should broadcast the new redacted chain as a special chain,
meaning that every user of the system should adopt this new redacted chain in favor of any
other chain, even longer ones. The way this is achieved depends on the actual system in use.

Algorithm 1: Chain Redact

input : The input chain C of length n, a set of block indices I ⊆ [n], a set of values
{x′i}i∈I , and the chameleon hash trapdoor key tk .

output: The redacted chain C′ of length n.

C′ ← C;
Parse the chain C′ as (B1, · · · , Bn);
for i := 1, . . . , n do

if i ∈ I then
Parse the i-th block of C′ as Bi := 〈si, xi, ctr i, (hi, ξi)〉;
ξ′i ← HCol(tk , (hi, si||xi, ξi), (si||x′i));
B′i := 〈si, x′i, ctr i, (hi, ξ

′
i)〉;

C′ ← C′dn−i+1||B′i||ieC′;
end

end
return C′

Note that each time a block is redacted using Algorithm 1, a collision for the underlying
chameleon hash function is exposed. Hence, it is important that the ability to see arbitrary
collisions does not expose the secret trapdoor key, as otherwise unauthorized users might be
able to rewrite arbitrary blocks in the chain. In Section 4 we explain how to generically leverage
any standard collision-resistant chameleon hash function into one additionally meeting such a
key-exposure freeness requirement.

9



Shrinking the chain. Another possibility with redactable blockchains is to completely re-
move entire blocks from a chain. This can be essential for scalability purposes, such as saving
disk space and computational power necessary when handling larger chains. We present an
algorithm (see Algorithm 2 below) for such a “chain shrinking” functionality. The intuition
behind it is that in order to remove the block Bi it is necessary to redact the block Bi+1 by
assigning si+1 ← si. A collision then needs to be computed for Bi+1 producing the new block
B′i+1 that is inserted in the chain in place of the Bi+1 block, leaving the chain in a consistent
state. As in Algorithm 1, we also note that at the end of the execution of Algorithm 2, the
central authority should broadcast the new shrinked chain as a special chain, meaning that
every user of the system should adopt this new redacted chain in favor of any other chain, even
longer ones.

Algorithm 2: Chain Shrink

input : The input chain C of length n, a set of block indices I ⊆ [n] and the chameleon
hash trapdoor key tk .

output: The new chain C′ of length n− |I|.
C′ ← C;
Parse the chain C′ as (B1, · · · , Bn);
for i := 1, . . . , n do

if i ∈ I then
Parse the i-th block of C′ as Bi := 〈si, xi, ctr i, (hi, ξi)〉;
Parse the i+ 1-th block of C′ as Bi+1 := 〈si+1, xi+1, ctr i+1, (hi+1, ξi+1)〉;
ξ′i+1 ← HCol(tk , (hi+1, si+1||xi+1, ξi+1), (si||xi+1));
B′i+1 := 〈si, xi+1, ctr i+1, (hi+1, ξ

′
i+1)〉;

C′ ← C′dn−i||B′i+1||i+1eC′;
end

end
return C′

We note that in Algorithm 2, if the set I contains only indexes to successive blocks, the
execution can be optimized to essentially one execution of the for loop. This is because in
order to remove blocks Bk to Bk+j , it is sufficient to redact only block Bk+j+1 (i.e., the next
remaining block).

3.4 Decentralized Setting

Below, we explain how to adapt our framework to the decentralized setting, where there is no
central trusted authority. The main idea is to have the trapdoor key be secretly shared among
some fixed set of users that are in charge of redacting the blockchain. When a block needs to
be redacted, the users from this set engage in a secure multiparty computation (MPC) protocol
to compute Algorithm 1 and Algorithm 2 in a fully distributed manner.

3.4.1 Ideal Functionalities

During the set up of the system, we fix a subset U of cardinality n, containing the users that
will be in charge of redacting the blockchain content. We remark that the actual choice of the
subset U can be completely dependent on the application and on the system requirements; we
discuss some examples in Section 3.5.
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Key Generation Functionality:

1. After receiving the “start” signal from all honest parties, run (hk , tk)←$ HGen(1κ) and
send hk to the adversary.

2. We assume a secret sharing scheme (Share,Rec) is given, with which the trapdoor key tk
can be secret-shared. For each dishonest party Pj , receive a share τj from the adversary.

3. Construct a complete set of shares (τ1, · · · , τn) for the trapdoor key tk taking into consid-
eration all the dishonest shares sent by the adversary. We note that it is always possible
to construct such a set of shares since all the dishonest parties form an unqualified set for
the secret sharing scheme. Send τi to each honest party Pi.

Figure 3: The ideal functionality for the distributed key generation

Following the common practice in the setting of MPC, we now define two ideal function-
alities that aim at capturing the security requirements for generating the hash keys and for
redacting the blockchain in the decentralized setting. These functionalities will later be realized
by concrete MPC protocols, in both cases of semi-honest and fully malicious corruptions.

Key generation. When the system is set-up for the first time, we need to run the key
generation algorithm HGen for the underlying chameleon hash function, obtaining a public
hash key hk and a secret trapdoor key tk . Since no user is allowed to know the trapdoor key,
the idea is to have each player Pi in the set U obtain a share τi of tk . This is the purpose of
the ideal functionality described in Fig. 3, which is parametrized by a secret sharing scheme
(Share,Rec).

Recall that a t-out-of-n secret sharing scheme (Share,Rec) consists of a pair of algorithms
such that: (i) The randomized algorithm Share takes as input a target value x and returns a
sequence of n shares τ1, . . . , τn; (ii) The deterministic algorithm Rec takes as input n shares
τ1, . . . , τn and returns a value x or an incorrect output symbol ⊥. The main security guarantee
is that any subset of t shares (a.k.a. an unqualified set) reveals no information on the shared
value x; on the other hand, any subset of t+ 1 (or more) shares allows to efficiently recover x.
We refer the reader, e.g., to [Bei11] for more details on secret sharing; some examples are also
discussed below.

Chain redaction. When a block B := 〈s, x, ctr , (h, ξ)〉 needs to be redacted into a modified
block B′ := 〈s, x′, ctr , (h, ξ′)〉, each user in the set U needs to inspect its own blockchain and find
block B. Hence, the players need to execute Algorithm 1 in a distributed manner. In particular,
each player Pi is given as input its own share τi of the chameleon hash trapdoor key, and they
all need to run the collision-finding algorithm HCol on common input ((h, s||x, ξ), s||x′), in order
to obtain the modified check value ξ′.

This is the purpose of the ideal functionality described in Fig. 4, which is again parametrized
by a secret sharing scheme (Share,Rec) (in fact, the same secret sharing scheme as for the
functionality of Fig. 3). For simplicity, we described the functionality for the general case where
the goal is to find collisions between arbitrary messages m and m′. Note that actively corrupted
players might submit incorrect shares, and the secret sharing scheme needs to cope with such a
possibility. Also note that after each player receives the modified value ξ′ for the new block B′,
each of the users in U constructs a new chain by replacing block B with block B′. Thus, the
redacted chain is broadcast to all users in the system as a new special chain that should replace
any other chain, even longer ones. Although the latter needs to be done in an application-
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Collision-Finding Functionality:

1. Receive the shares τi from each party Pi and reconstruct the trapdoor key tk :=
Rec(τ1, · · · , τn). Note that the shares of the dishonest parties are chosen by the adversary.

2. Upon receiving a “compute collision” signal for the pair ((h,m, ξ),m′) from all honest
parties, compute ξ′ ← HCol(tk , (h,m, ξ),m′) and send (h,m, ξ) and ξ′ to the adversary.

3. Upon receiving an “OK” signal from the adversary forward the value ξ′ to all honest
parties, otherwise forward ⊥ to all honest parties.

Figure 4: The ideal functionality for the distributed collision-finding algorithm

specific manner, we recall that in practice the redact operation is not going to be performed
very often, but only in case there is a need to redact undesirable content from a given block.

The decentralized version of Algorithm 2 is similar to the one described above, the only
difference being that instead of redacting a block Bi, a new chain is built without the block Bi
in it. To keep the chain valid the block Bi+1 needs to be redacted, as detailed in Algorithm 2.
The latter can be achieved using the same ideal functionality as in Fig. 4, by simply adjusting
the input messages from the users.

3.4.2 Concrete Instantiations

We now present concrete protocols for securely realizing the ideal functionalities described in
the previous section. For the sake of concreteness and practicality, we chose to work with
the (public-coin) chameleon hash function introduced by Ateniese and de Medeiros [AdM04];
this construction satisfies enhanced collision resistance (cf. Definition 4) in the generic group
model, based on the Discrete Logarithm assumption. After presenting the hash function, we
deal separately with the setting in which the corrupted players within the set U are assumed
to be semi-honest (i.e., they always follow the protocol but try to learn additional information
from the transcript) and fully malicious (i.e., they can arbitrarily deviate from the protocol
description).

The hash function. Let p, q be prime such that p = 2q + 1, and let g be a generator for the
subgroup of quadratic residues QRp of Z∗p. Consider the following public-coin chameleon hash
function (HGen,Hash,HCol).

• (y, x)←$ HGen(1κ): The trapdoor key tk is a random value x ∈ [1, q − 1], and the hash
key hk is equal to y = gx.
• h := Hash(y,m; r, s): To hash a message m ∈ {0, 1}∗, pick random r, s←$ Zq, and return
h := r−(yH(m||r) ·gs mod p) mod q where H : {0, 1}∗ → Zq is a standard-collision resistant
hash function.
• (r′, s′)←$ HCol(x, (h,m, r, s),m′): To compute a collision for message m′, pick a random
k ∈ [1, q − 1] and compute r′ := h+ (gk mod p) mod q and s′ := k −H(m′||r′) · x mod q.
Return (r′, s′).

Semi-honest setting. As a warm up we consider the case of passive corruption, where up to
t players in the set U are semi-honest. For this setting, we will rely on the following simple secret
sharing scheme (Share,Rec): (i) Upon input a value x ∈ Zq, algorithm Share samples random
τ1, . . . τn−1←$ Zq, sets τn := x −

∑n−1
i=1 τi mod q, and returns (τ1, . . . , τn); (ii) Algorithm Rec

12



takes as input τ1, . . . , τn ∈ Zq and returns x =
∑n

i=1 τi mod q. The above is easily seen to be
an (n− 1)-out-of-n secret sharing scheme.

Next, we describe two simple MPC protocols Π1
sh and Π2

sh for securely realizing the func-
tionality of Fig. 3 and Fig. 4 (respectively).

• Consider the following n-party protocol Π1
sh. Each player Pi picks a random τi ∈ Zq and

then all players engage into a semi-honest MPC protocol for computing y =
∏n
i=1 g

τi mod
p; each player outputs (y, τi). This protocol is easily seen to realize the functionality of
Fig. 3 under semi-honest corruption of up to n − 1 players. Indeed, as long as one of
the players is honest, the value y (with corresponding trapdoor x :=

∑n
i=1 τi) will be

uniformly distributed, as required.
• Consider the following n-party protocol Π2

sh, on common input ((h,m, r, s),m′). First,
each player Pi chooses a random ki←$ Zq and then all players engage into a semi-honest
MPC protocol for computing r′ := h +

(∏n
i=1 g

ki mod p
)

mod q. Second, the players
engage into a semi-honest MPC protocol for computing

∑n
i=1 ki−H(m′||r′)·

∑n
i=1 τi mod q,

where the private input of Pi is defined to be (ki, τi). Finally, each player outputs (r′, s′).
The above protocol can be easily seen to securely realize the functionality of Fig. 4 under
semi-honest corruptions. The number of tolerated corruptions depends on the semi-honest
MPC protocols for performing the computations described above. Suitable protocols, for
the setting where at least half of the players are honest, are described, e.g., in [BGW88,
AL11].

Malicious setting. We briefly explain how to extend the previous protocol to the setting
of active corruptions. The main difficulty here is that malicious players can now use incorrect
shares. In order to ensure that the correct trapdoor is re-constructed, we rely on so called
robust secret sharing. Informally, a secret sharing scheme (Share,Rec) is δ-robust if an adversary
adaptively modifying at most t shares computed via Share can cause the output of Rec to be
wrong with probability at most δ. See, e.g., [RB07, BPRW15] for a formal definition.

Before adapting the protocols, we recall the standard secret sharing scheme due to Shamir
[Sha79]: (i) Upon input a value x ∈ Zq, algorithm Share picks random coefficients α1, . . . , αt−1 ∈
Zq and defines τi := x + α1 · i + · · · + αt−1 · it−1 mod q for all i ∈ [n]; (ii) Upon input t shares
(τ1, . . . , τt), algorithm Rec interpolates the polynomial α(X) = α0 + α1 ·X + · · ·+ αt−1 ·Xt−1

and returns α(0). Shamir’s secret sharing can be made robust against corruption of at most
t < n/3 shares when used in tandem with Reed-Solomon decoding during the reconstruction
procedure. Alternatively, for tolerating a higher threshold t < n/2 (which is also the maximal
threshold for such schemes [Man11]) one could use Shamir’s secret sharing in conjunction with
information-theoretic message authentication codes, as proposed by Rabin and Ben-Or [RB89].
This results in shares of sub-optimal size µ + Õ(n · κ), where µ is the bit-size of the message,
and κ is the security parameter ensuring δ = 2−κ; robust schemes with almost optimal share
size have recently been designed in [BPRW15].

Below is a sketch of how the protocols Π1
sh and Π2

sh described above can be adapted to the
malicious setting, where for simplicity we use Shamir’s secret sharing in tandem with Reed-
Solomon decoding.

• Consider the following n-party protocol Π1
mal. Each player Pi samples uniformly at ran-

dom xi := (αi0, α
i
1, . . . , α

i
t−1) ∈ Ztq. Hence, the players engage in an MPC protocol for

computing the function (x1, . . . , xn) 7→ ((y, α(1)), . . . , (y, α(n))), where y = gα(0) and

α(X) :=

n∑
i=1

αi0 +

n∑
i=1

αi1 ·X + · · ·+
n∑
i=1

αit−1 ·Xt−1.
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• Consider the following n-party protocol Π2
mal. The protocol proceeds similarly to Π2

sh

with the following differences. In the first step the random value k is shared among the
players using Shamir’s secret sharing (as done in Π1

mal); denote by β(X) the corresponding
polynomial, and by β(i) the share obtained by player Pi. In the second step the players

engage in an MPC protocol for computing the value r′ = h+ (gβ̂(0) mod p) mod q, where
the polynomial β̂(X) is reconstructed by using the (possibly corrupted) shares β(i) from
the players, via the Berlekamp-Welch [WB86] algorithm. In the third step the players
engage in another MPC protocol for computing s′ = β̂(0)−H(m′||r′′) · α̂(0) mod q, where
the private input of each player Pi is (α(i), β(i)) and α̂(X), β̂(X) are again reconstructed
by using the (possibly corrupted) shares α(i), β(i) from the players, via the Berlekamp-
Welch algorithm.

Note that the above protocols rely on auxiliary MPC protocols with malicious security, for
computing arithmetic functions in Zq. Suitable MPC protocols for the above tasks, for the
setting where at least two thirds of the players are honest, are described, e.g., in [BGW88,
AL11, DFK+06].

3.5 On Key Management

Although we view the technical tools that make redactions possible as the main contribution
of this work, a natural question that may arise is how the trapdoor key for the chameleon
hash function is managed. We stress that the answer to this question is completely application
dependent, but we still provide some examples.

Below we briefly describe three types of blockchains that occur in real-world applications [But],
and clarify how the trapdoor key could be managed in each case.

• Private blockchain: In this type of blockchain, which is widely used by the financial
sector [PB], the write permissions are only given to a central authority, and the read
permissions may be public or restricted. In this case the key management becomes simple;
the trapdoor key could be given to the central authority that has the power to compute
collisions and therefore redact blocks. This scenario is described in Section 3.3.
• Consortium blockchain: In this type of blockchain the consensus is controlled by a

predetermined set of parties (i.e., a consortium). In this case the trapdoor key can be
shared among all the parties of the consortium, and redactions can be realized using MPC,
as described in Section 3.4.
• Public blockchain: This type of blockchain is completely decentralized, and any party

is allowed to send transactions to the network and have them included in the blockchain
(as long as the transactions are valid). The consensus process is decentralized and not
controlled by any party. The best example of a public blockchain is Bitcoin. In this
case we have two options to manage the trapdoor key (both using MPC, as described in
Section 3.4).

1. The trapdoor key can be distributed among all the parties (full miners) of the net-
work. The drawback of this solution is that, if the number of parties in the network
is too big (e.g., > 200), it might not be very efficient due to performance issues of
the MPC protocol.

2. The trapdoor key can be distributed among a carefully chosen subset of the parties.
For example, in Bitcoin it is well known that the majority of the network hashing
power is actually controlled by a small number of parties (e.g., the top 7 mining
pools control almost 70% of the network total hashing power [Inf]). Although we
acknowledge that the concentration of hashing power to a small number of parties
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can be unhealthy to the system, this solution does not change the existing Bitcoin
trust assumption (i.e., Bitcoin already assumes trusted majority).

4 Chameleon Hash Transform

We start by formally defining collision resistance of public/secret coin chameleon hash functions,
in Section 4.1. Section 4.2 introduces the main ingredients required by our generic transforma-
tion, which is described and analyzed in full details in Section 4.3. Finally, in Section 4.4, we
instantiate our transformation under standard complexity assumptions, both in the standard
and in the random oracle model.

4.1 Enhanced Collision Resistance

A collision for a secret-coin or public-coin hash function is a tuple h, (m, ξ), (m′, ξ′) such that
m 6= m′, and (h, ξ) and (h, ξ′) are valid hash/check pairs for m and m′ (respectively). For a
chameleon hash function we require the following security property, which intuitively says that it
should be hard to find collisions for the hash function even given access to the collision finding
algorithm (returning collisions for adaptively chosen hash values). We call such a property
enhanced collision resistance, and we define it formally below.

Definition 4 (Enhanced collision resistance). Let CH = (HGen,Hash,HVer,HCol) be a (se-
cret-coin or public-coin) chameleon hash function. We say that CH satisfies enhanced collision
resistance if for all PPT breakers B, the following quantity is negligible in the security parameter:

P
[

(HVer(hk ,m, (h, ξ)) = HVer(hk ,m′, (h, ξ′)) = 1)
∧(m 6= m′) ∧ (h /∈ Q)

:
(h, (m, ξ), (m′, ξ′))←$ BOhk,tk (·)(hk)

(hk , tk)←$ HGen(1κ)

]
,

where the set Q is the set of all hash values queried by B to its oracle, and oracle Ohk ,tk is
defined as follows: Upon input a collision query of the form ((h,m, ξ),m′) run HVer(hk ,m,
(h, ξ)) := d; if d = 1 return the output of HCol(tk , (h,m, ξ),m′), otherwise return ⊥. In case B
is not allowed to query oracle Ohk ,tk , we simply say that CH is collision-resistant.

Discussion. Any standard chameleon hash (e.g., the ones considered in [Dam87, KR00, ST01,
BR14])is easily seen to imply a public-coin collision-resistant chameleon hash as specified in
Definition 3. Let us stress, however, that secret-coin chameleon hash functions can be used
for the very same applications as public-coin ones, in particular for constructing chameleon
signatures [KR00] and online/offline signatures [EGM96, ST01, BCR+13];the only difference is
that one needs to store the check value ξ (instead of the randomness r) in order to verify a hash
value, and the hash verification does not in general consist of re-computing the hash.

Unfortunately, as observed by Ateniese and de Medeiros [AdM04], collision resistance is
not sufficient for most of the applications of chameleon hash. The reason is that, while the
hash function is indeed collision-resistant, any party seeing a collision for the hash function
would be able to find other collisions or even recover the secret trapdoor information. This
“key exposure” problem makes chameleon hashes not applicable in many contexts. Enhanced
collision resistance, as defined above, precisely addresses such issue as it requires that it should
be hard to find collisions even after seeing (polynomially many) collisions.

Yet another flavor of chameleon hashing consists of so-called “labeled” hash functions, where
the hash algorithm takes as input an additional value λ called the label. Some of these con-
structions, e.g. the ones in [AdM04, CZK04, CTZD10, CZS+10], do not suffer from the key
exposure problem, as they satisfy the property that it should be unfeasible to find collisions
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for a “fresh” label λ∗, even given access to an oracle that outputs collisions for arbitrary other
labels λ 6= λ∗. 1However, labeled chameleon hash functions are not useful for constructing
online/offline signatures and for the type of application considered in this paper.

4.2 Ingredients

4.2.1 Public-Key Encryption

A Public-Key Encryption (PKE) scheme is a tuple of efficient algorithms PKE = (KGen,Enc,Dec)
defined as follows. (i) The probabilistic algorithm KGen takes as input the security parame-
ter κ ∈ N, and outputs a public/secret key pair (pk , sk). (ii) The probabilistic algorithm Enc
takes as input the public key pk , a message m ∈ M, and implicit randomness ρ ∈ Rpke, and
outputs a ciphertext c = Enc(pk ,m; ρ). the set of all ciphertexts is denoted by C. (iii) The
deterministic algorithm Dec takes as input the secret key sk and a ciphertext c ∈ C and outputs
m = Dec(sk , c) which is either equal to some message m ∈M or to an error symbol ⊥.

Correctness. A PKE scheme meets the correctness property if the decryption of a ciphertext
encrypting a given plaintext yields the plaintext.

Definition 5 (Correctness for PKE). We say that PKE satisfies correctness if for all (pk ,
sk)←$ KGen(1κ) there exists a negligible function ν : N → [0, 1] such that that P[Dec(sk ,
Enc(pk ,m)) = m] ≥ 1 − ν(κ) (where the randomness is taken over the internal coin tosses of
algorithm Enc).

Semantic security. The standard security notion for PKE schemes goes under the name of
security against chosen-plaintext attacks (CPA), and informally states that no efficient adversary
given the public key can distinguish the encryption of two (possibly known) messages [GM84].

Definition 6 (CPA security). Let PKE = (KGen,Enc,Dec) be a PKE scheme. We say that
PKE is CPA-secure if for all PPT adversaries A the following quantity is negligible:

P
[
b′ = b :

b′←$ A(pk , c); c←$ Enc(pk ,mb); b←$ {0, 1}
(m0,m1)←$ A(pk); (pk , sk)←$ KGen(1κ)

]
.

4.2.2 Non-Interactive Zero-Knowledge

Let R : {0, 1}∗×{0, 1}∗ → {0, 1} be an NP relation on pairs (x, y), with corresponding language
L := {y : ∃x s.t. R(x, y) = 1}. A non-interactive argument for R allows a prover P to convince
a verifier V that a common element y belongs to the language L (where both P and V are
modeled as PPT algorithms); the prover P is facilitated by knowing a witness x for y ∈ L.

Definition 7 (Non-interactive argument). A non-interactive argument for an NP relation R is
a tuple of efficient algorithms NIA = (I,P,V) specified as follows.

• ω←$ I(1κ): The probabilistic algorithm I takes as input the security parameter κ ∈ N,
and outputs the public common reference string (CRS) ω.
• π←$ P(ω, x, y): The probabilistic algorithm P takes as input the CRS ω and a pair x, y

such that R(x, y) = 1, and returns a proof π for membership of y ∈ L.
• d = V(ω, y, π): The deterministic algorithm V takes as input the CRS ω and a pair (y, π),

and returns a decision bit d ∈ {0, 1}.
1Identity-based chameleon hash functions [AdM04, CZT+11, CZS+14] also partially address the key exposure

problem, but they require a trusted party and thus only offer a partial solution.
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Non-interactive arguments typically satisfy three properties known as completeness, zero-
knowledge, and soundness, which we review below. We remark that the CRS is necessary for
achieving non-interactive zero-knowledge (see, e.g., [Gol01]).

Completeness. The completeness property states that a honest prover (holding a valid wit-
ness x) should always be able to convince the verifier that y ∈ L.

Definition 8 (Completeness for arguments). Let NIA = (I,P,V) be a non-interactive argu-
ment for an NP relation R. We say that NIA satisfies completeness if for all pairs (x, y) such
that R(x, y) = 1, there exists a negligible function ν : N→ [0, 1] such that

P [V(ω, y, π) = 1 : π←$ P(ω, x, y);ω←$ I(1κ)] ≥ 1− ν(κ).

Zero-knowledge. The zero-knowledge property informally says that a possibly malicious
verifier cannot acquire any knowledge on the witness that it couldn’t acquire by itself. Non-
interactive zero-knowledge (NIZK) was first formalized by Blum, Feldman and Micali [BFM88].

Definition 9 (Zero-knowledge). Let NIA = (I,P,V) be a non-interactive argument for an
NP relation R. We say that NIA satisfies zero-knowledge if there exists a PPT simulator
S := (S1,S2) such that for all adversaries A the following quantity is negligible:∣∣∣∣P [b = b′ :

b′←$ A(ω, τ, πb);π0←$ P(ω, x, y);π1←$ S2(τ, y)
b←$ {0, 1}; (x, y)←$ A(ω, τ); (ω, τ)←$ S1(1κ)

]
− 1

2

∣∣∣∣ .
Simulation extractability. The soundness property states that it is hard for a malicious
prover to generate an accepting proof π for an element y 6∈ L. Below, we review a strictly
stronger formulation of the soundness requirement which is known as simulation extractability,
and informally says that soundness still holds even if the malicious prover can access simulated
proofs for true statements.

This leads to the concept of true-simulation extractable (tSE) NIZK, as defined by Dodis,
Haralambiev, Lòpez-Alt, and Wichs [DHLW10].

Definition 10 (True-simulation extractability). Let NIA = (I,P,V) be a NIZK for an NP
relation R, with zero-knowledge simulator S = (S1,S2), and let f be an efficiently computable
function. We say that NIA satisfies true-simulation f -extractability (f -tSE for short) if there
exists a PPT extractor E such that for all PPT adversaries A the following quantity is negligible:

P

 y∗ 6∈ Q ∧ (V(ω, y∗, π∗) = 1)
∧∀x∗ s.t. f(x∗) = z∗(R(x∗, y∗) = 0)

:

z∗←$ E(τ, y∗, π∗)

(y∗, π∗)←$ AOτ (·,·)(ω)
(ω, τ)←$ S1(1κ)

,
where oracle Oτ takes as input pairs (xi, yi) and returns the same as S2(τ, yi) as long as
R(xi, yi) = 1 (and ⊥ otherwise), and Q is the set of all values yi asked to oracle Oτ .

Note that in the above definition the adversary is only allowed to see simulated proof for
true statements. A stronger variant (which is not needed in this paper) requires that simulation
extractability holds even if the adversary is allowed to see simulated proofs for possibly false
statements. The latter property is also known under the name of robust NIZK [SCO+01, Gro06].

As noted in [DHLW10] tSE NIZK are significantly more efficient to construct, indeed they
can be generically obtained combining any standard NIZK (such as the powerful Groth-Sahai
NIZK [GS08]) with a CCA-secure PKE scheme.
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4.3 Generic Transformation

To the best of our knowledge, the only construction of a chameleon hash function satisfying
enhanced collision resistance is due to [AdM04]; the construction is ad-hoc and relies on the
Nyberg-Rueppel signature scheme [NR94] (whose security can be shown under the Discrete
Logarithm assumption in the generic group model [Sho97]).

Previously to our work it was unknown whether enhanced collision resistance can be achieved
in a non ad-hoc fashion, based on different complexity assumptions in the standard model. We
answer this open question in the affirmative, by exhibiting a generic transformation from any
public-coin collision-resistant chameleon hash to a secret-coin chameleon hash satisfying the
stronger enhanced collision resistance requirement. The transformation is based on a CPA-
secure PKE scheme (cf. Section 4.2.1) and on a tSE NIZK [DHLW10] (cf. Section 4.2.2), and is
presented in detail below.

The transformation. Let CH = (HGen,Hash,HCol) be a public-coin chameleon hash func-
tion (with message space Mhash and randomness space Rhash), let PKE = (KGen,Enc,Dec) be
a PKE scheme (with message space Rhash and randomness space Rpke), and let NIA = (I,P,V)
be a non-interactive argument system for the language

LCH = {(pk , c, hk , h,m) : ∃(r, ρ) s.t. h = Hash(hk ,m; r) ∧ c = Enc(pk , r; ρ)}. (1)

Consider the secret-coin chameleon hash function CH∗ = (HGen∗,Hash∗,HVer∗,HCol∗) specified
as follows.

• HGen∗(1κ): Run (hk , tk)←$ HGen(1κ), sample (pk , sk)←$ KGen(1κ), and ω←$ I(1κ). Re-
turn the pair (hk∗, tk∗), such that hk∗ := (hk , ω, pk), and tk∗ := (tk , sk).
• Hash∗(hk∗,m): Sample a random value r ∈ Rhash and run Hash(hk ,m; r) := h. Sample

a random value ρ ∈ Rpke and run c := Enc(pk , r; ρ). Compute the proof π←$ P(ω, x, y),
where x := (r, ρ) and y := (pk , c, hk , h,m), and return (h, ξ) such that ξ := (c, π).
• HVer∗(hk∗,m, (h, ξ)): Parse ξ = (c, π) and return the output of V(ω, y, π) where y =

(pk , c, hk , h,m).
• HCol∗(tk∗, (h,m, ξ),m′): First run HVer(hk∗,m, (h, ξ)) := d; if d = 0 then output ⊥, other-

wise, decrypt the randomness r := Dec(sk , c), compute a collision r′←$ HCol(tk , (h,m, r),
m′), sample a random ρ′ ∈ Rpke and encrypt the new randomness c′ := Enc(pk , r′; ρ′).
Compute the proof π′←$ P(ω, x′, y′), such that x′ = (r′, ρ′) and y′ := (pk , c′, hk , h,m′),
and return ξ′ := (c′, π′).

The correctness property follows readily from the correctness of the underlying building
blocks. As for security, we show the following result.

Theorem 1. Assume that CH is a public-coin collision-resistant chameleon hash function, that
PKE is a CPA-secure PKE scheme, and that NIA is an f -tSE-NIZK for the language of
Eq. (1), where for any witness (r, ρ) we define f(r, ρ) = r. Then the above defined secret-coin
chameleon hash function CH∗ satisfies enhanced collision resistance.

Proof. The proof is by game hopping. We define a series of games, starting with the original
game for enhanced collision resistance of our construction CH∗. Next, we argue that each pair
of adjacent games is computationally indistinguishable and additionally that any PPT breaker
has only a negligible advantage in the last game; this yields the theorem.

Below we give a concise description of the games, focusing only on the incremental changes
between each game and the previous one; a full description of the games appears in Fig. 5.
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Game G0-3, G1-3 :

(pk , sk)←$ KGen(1κ)

ω←$ I(1κ); (ω, τ)←$ S1(1κ)

(hk , tk)←$ HGen(1κ)
hk∗ := (hk , pk , ω)

tk∗ := (tk , sk); tk∗ = (tk , sk , τ)

(h,m, ξ,m′, ξ′)←$ B∗Ohk∗,tk∗ (·)(hk∗)

Oracle Ohk∗,tk∗((h,m, ξ),m
′): //G0-3, G1-3 , G2-3 , G3

Parse ξ := (c, π); y = (pk , c, hk , h,m)
If V(ω, y, π) = 0

Return ⊥
r := Dec(sk , c); r←$ E(τ, y, π)

r′←$ HCol(tk , (h,m, r),m′)
ρ′←$Rpke

c′ = Enc(pk , r′; ρ′); c′ = Enc(pk , 0; ρ)

y′ := (pk , c′, hk , h,m′)
x′ := (r′, ρ′)

π′←$ P(ω, x′, y′); π′←$ S2(τ, y′)

Return ξ′ := (c′, π′).

Figure 5: Games in the proof of Theorem 1.

Game G0: This is the original experiment of Definition 4, running with our secret-coin chameleon
hash function CH∗ and a PPT breaker B∗.

Game G1: We change the way collision queries are answered. In particular, we compute the
proof π′ by running the zero-knowledge simulator S = (S1, S2) instead of running the real
prover P. In order to do so, we first set-up the CRS by running (ω, τ)←$ S1(1κ) and later
generate π′ by running S2(τ, ·).

Game G2: We change the way collision queries are answered. In particular, instead of recov-
ering the randomness r by decrypting the ciphertext c, we now compute r by extracting
the proof π. In order to do so, we first set-up the CRS by running (ω, τ)←$ S1(1κ) and
later recover r by running E(τ, ·, ·).

Game G3: We change the way collision queries are answered. In particular, instead of first
equivocating the hash value h yielding some new randomness r′ (corresponding to message
m′) and then computing c′ as an encryption of r′, we simply let c′ be an encryption of
zero.

In each game Gi, for i ∈ [0, 3], we define the event Gi = 1 to be the event that B∗ wins
in the corresponding game, namely that the tuple (h,m, ξ,m′, ξ′) returned by B∗ is such that
m 6= m′ and both proofs π and π′ contained in ξ and ξ′ are accepting. Next, we analyze the
computational distance between each pair of adjacent games.

Claim 1. For all PPT distinguishers D there exists a negligible function ν0,1 : N → [0, 1] such
that |P [D(G0(κ)) = 1]− P [D(G1(κ)) = 1]| ≤ ν0,1(κ).

Proof of claim. Assume that there exists a PPT distinguisher D and a polynomial p0,1(·) such
that, for infinitely many values of κ ∈ N, we have that D distinguishes between game G0 and
game G1 with probability at least 1/p0,1(κ). Let q ∈ poly(κ) be the number of queries that D is
allowed to ask to its oracle. For an index i ∈ [0, q] consider the hybrid game Hi that answers the
first i queries as in game G0 and all the subsequent queries as in game G1. Note that H0 ≡ G1

and Hq ≡ G0.
By a standard hybrid argument, we have that there exists an index i ∈ [0, q] such that D tells

apart Hi−1 and Hi with non-negligible probability 1/q · 1/p0,1(κ). We build a PPT adversary
A that (using distinguisher D) breaks the non-interactive zero-knowledge property of NIA. A
formal description of A follows.
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Adversary A:

• The challenger runs (ω, τ)←$ S1(1κ) and forwards (ω, τ) to A.
• Run (hk , tk)←$ HGen(1κ), sample (pk , sk)←$ KGen(1κ), and send hk∗ := (hk , pk , ω)

to D.
• Upon input a collision query of type ((hj ,mj , ξj),m

′
j) from D, such that ξj =

(cj , πj), first check whether V(ω, (pk , cj , hk , hj ,m), πj) = 0. In case this hap-
pens return ⊥, otherwise: Decrypt the randomness rj := Dec(sk , cj), find a col-
lision r′j ←$ HCol(tk , (hj ,mj , rj),m

′
j), sample ρ′j ←$Rpke, and let c′j = Enc(pk ,

r′j ; ρ
′
j). Hence:

– If j ≤ i − 1, compute π′←$ P(ω, (pk , c′j , hk , hjm
′
j), (r

′
j , ρ
′
j)) and return ξ′j

:= (c′j , π
′
j) to D.

– If j = i, forward ((r′j , ρ
′
j), (pk , c′j , hk , hj ,m

′
j)) to the challenger obtaining a

proof π′j ; return ξ′j := (c′j , π
′
j) to D.

– If j ≥ i + 1, compute π′j ←$ S2(τ, (pk , c′j , hk , hj ,m
′
j)) and return ξ′ := (c′j ,

π′j).

• Output whatever D outputs.

For the analysis, note that the only difference between game Hi−1 and game Hi is on how
the i-th query is answered. In particular, in case the hidden bit b in the definition of non-
interactive zero-knowledge equals zero A’s simulation produces exactly the same distribution as
in Hi−1, and otherwise A’s simulation produces exactly the same distribution as in Hi. Hence,
A breaks the NIZK property with non-negligible advantage 1/q ·1/p0,1(κ), a contradiction. This
concludes the proof.

Claim 2. For all PPT distinguishers D there exists a negligible function ν1,2 : N → [0, 1] such
that |P [D(G1(κ)) = 1]− P [D(G2(κ)) = 1]| ≤ ν1,2(κ).

Proof of claim. Let q ∈ poly(κ) be the number of collision queries that the adversary is allowed
to ask to its oracle, where each query has a type ((hj ,mj , ξj),m

′
j) for some ξ′j = (cj , πj). Define

the following “bad event” E, in the probability space of game G1: The event becomes true if
there exists an index i ∈ [q] such that the proof πi is accepting for (pk , ci, hk , hi,mi) ∈ LCH∗ ,
but running the extractor E(τ, ·, ·) on (yi, πi) yields a value ri such that hi 6= Hash(hk ,mi; ri),
whereas this does not happen if ri is computed as in G1.

Notice that G1(κ) and G2(κ) are identically distributed conditioning on E not happening.
Hence, by a standard argument, it suffices to bound the probability of provoking event E by all
PPT adversaries D. Assume that there exists a PPT distinguisher D and a polynomial p1,2(·)
such that, for infinitely many values of κ ∈ N, we have that D provokes event E with probability
at least 1/p1,2(κ).

We build an adversary A that (using distinguisher D) breaks true-simulation extractability of
NIA (for the function f defined in the theorem statement). A formal description of A follows.

Adversary A:

• The challenger runs (ω, τ)←$ S1(1κ) and forwards ω to A.
• Run (hk , tk)←$ HGen(1κ), sample (pk , sk)←$ KGen(1κ), and send hk∗ := (hk , pk , ω)

to D.
• Upon input a collision query of type ((hj ,mj , ξj),m

′
j) from D, such that ξj =

(cj , πj), first check whether V(ω, (pk , cj , hk , hj ,mj), πj) = 0. In case this hap-
pens return ⊥, otherwise: Decrypt the randomness rj := Dec(sk , cj), find a
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collision r′j ←$ HCol(tk , (hj ,mj , rj),m
′
j), sample ρ′j ←$Rpke and encrypt c′j :=

Enc(pk , r′j ; ρ
′
j). Forward (x′j , y

′
j) to the target oracle, where x′j := (r′j , ρ

′
j)

and y′j := (pk , c′j , hk , hj ,m
′
j), obtaining a simulated proof π′j and forward

ξ′j := (c′j , π
′
j).

• After D is done with its queries, sample a random index i←$ [q] and forward
(y∗, π∗) to the challenger, where the values y∗ := (pk , ci, hk , hi,mi) and π∗ := πi
are taken from D’s i-th query to the collision oracle.

For the analysis, we note that A’s simulation is perfect as the answer to D’s queries to the
collision oracle are distributed exactly as in G1. Thus, D provokes event E with probability
1/p1,2(κ) and so the pair (y∗, π∗) violates the f -tSE property of the non-interactive argument
with non-negligible probability 1/q · 1/p1,2(κ). The claim follows.

Claim 3. For all PPT distinguishers D there exists a negligible function ν2,3 : N → [0, 1] such
that |P [D(G2(κ)) = 1]− P [D(G3(κ)) = 1]| ≤ ν2,3(κ).

Proof of claim. Assume that there exists a PPT distinguisher D and a polynomial p2,3(·) such
that, for infinitely many values of κ ∈ N, we have that D distinguishes between game G2 and
game G3 with probability at least 1/p2,3(κ). Let q ∈ poly(κ) be the number of queries that D is
allowed to ask to its oracle. For an index i ∈ [0, q] consider the hybrid game Hi that answers the
first i queries as in game G2 and all the subsequent queries as in game G3. Note that H0 ≡ G3

and Hq ≡ G2.
By a standard hybrid argument, we have that there exists an index i ∈ [0, q] such that D tells

apart Hi−1 and Hi with non-negligible probability 1/q · 1/p2,3(κ). We build a PPT adversary
A that (using distinguisher D) breaks CPA security of PKE . A formal description of A follows.

Adversary A:

• Receive pk from the challenger, where (pk , sk)←$ KGen(1κ).
• Run (hk , tk)←$ HGen(1κ), (ω, τ)←$ S1(1κ), and send hk∗ := (hk , pk , ω) to D.
• Upon input a collision query of type ((hj ,mj , ξj),m

′
j) from D, such that ξj =

(cj , πj), first check whether V(ω, (pk , cj , hk , hj ,m), πj) = 0. In case this hap-
pens return ⊥, otherwise: Extract the randomness rj := E(τ, (pk , cj , hk , hj ,
m), πj) and find a collision r′j ←$ HCol(tk , (hj ,mj , rj),m

′
j). Hence:

– If j ≤ i − 1, sample a random ρ′j ∈ Rpke, encrypt c′j := Enc(pk , r′j ; ρ
′
j),

simulate a proof π′j ←$ S2(τ, (pk , c′j , hk , hj ,m
′)), and return ξ′j := (c′j , π

′
j)

to D.
– If j = i, forward (r′j , 0) for the challenger receiving back a ciphertext c′j ;

simulate a proof π′j ←$ S2(τ, (pk , c′j , hk , hj ,m
′)), and return ξ′j := (c′j , π

′
j)

to D.
– If j ≥ i + 1, sample a random ρ′j ∈ Rpke, encrypt c′j := Enc(pk , 0; ρ′j),

simulate a proof π′j ←$ S2(τ, (pk , c′j , hk , hj ,m
′)), and return ξ′j := (c′j , π

′
j)

to D.

• Output whatever D outputs.

For the analysis, note that the only difference between game Hi−1 and game Hi is on how
the i-th collision query is answered. In particular, in case the hidden bit b in the definition of
CPA security equals zero, A’s simulation produces exactly the same distribution as in Hi−1,
and otherwise A’s simulation produces exactly the same distribution as in Hi. Hence, A breaks
CPA security with non-negligible advantage 1/q · 1/p2,3(κ), a contradiction. This concludes the
proof.
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Finally, we show that any PPT adversary has a negligible success probability in game G3,
which concludes the proof of the theorem.

Claim 4. For all PPT breakers B∗ there exists a negligible function ν3 : N → [0, 1] such that
P [G3(κ) = 1] ≤ ν3(κ).

Proof of claim. The proof is down to collision resistance of the underlying public-coin chameleon
hash function CH. Namely, assume that there is a PPT breaker B∗ and a polynomial p3(·) such
that, for infinitely many values of κ ∈ N, we have P [G3(κ) = 1] ≥ 1/p3(κ). We build a PPT
breaker B that (using breaker B∗) breaks collision resistance of CH as follows.

Adversary B:

• Receive hk from the challenger, where (hk , tk)←$ HGen(1κ).
• Run (ω, τ)←$ S1(1κ), (pk , sk)←$ KGen(1κ), and send hk∗ := (hk , pk , ω) to B∗.
• Upon input a collision query of type ((hj ,mj , ξj),m

′
j) from B∗, such that ξj =

(cj , πj), answer as this would be done in game G3. Note that this can be done
because the way collision queries are treated in G3 is completely independent
on the trapdoor information tk .
In particular, first check whether V(ω, (pk , cj , hk , hj ,m), πj) = 0. In case this
happens return ⊥, otherwise: Extract the randomness rj := E(τ, (pk , cj , hk , hj ,
m), πj), sample a random ρ′j ∈ Rpke, encrypt c′j := Enc(pk , 0; ρ′j), and simulate
π′j ←$ S2(τ, (pk , c′j , hk , hj ,m

′
j)); return ξ′j := (c′j , π

′
j) to B∗.

• Eventually B∗ outputs the tuple (h,m, ξ,m′, ξ′). When this happens, let r :=
Dec(sk , r) and r′ := Dec(sk , c′), and output (h,m, r,m′, r′) to the challenger.

For the analysis, note that B perfectly simulates B∗’s queries to the collision oracle. It follows
that, with probability at least 1/p3(κ), adversary B∗ outputs a collision for CH∗. This implies
that the output of B constitutes a valid collision for CH, with the same probability, and thus
concludes the proof of the claim.

4.4 Concrete Instantiations

We now explain how to instantiate our generic transformation from the previous section using
standard complexity assumptions. We need three main ingredients: (i) A public-coin chameleon
hash function CH = (HGen,Hash,HCol) with randomness space Rhash; (ii) A CPA-secure PKE
scheme PKE1 = (KGen1,Enc1,Dec1) with message space M1

pke := Rhash and randomness space

R1
pke; (iii) An f -tSE NIZK for the language of Eq. (1), where the function f : Rhash ×R1

pke →
Rhash has a type f(r, ρ) = r. For the latter component, we rely on the construction due to Dodis
et al. [DHLW10] that allows to obtain an f -tSE NIZK for any efficiently computable function
f and for any language L, based on a standard (non-extractable) NIZK for that language and
a CCA-secure PKE scheme.

Let PKE2 = (KGen2,Enc2,Dec2) be a CCA-secure PKE scheme with message spaceM2
pke :=

Rhash. Plugging in the construction from [DHLW10] the check value ξ in our construction has the
form ξ := (c1, c2, π), where π is a standard NIZK argument for ((pk1, c1), (hk , h,m), (pk2, c2)) ∈
LCH, with language LCH being defined as follows:

LCH =

((pk1, c1), (hk , h,m), (pk2, c2)) : ∃(r, ρ1, ρ2) s.t.

h = Hash(hk ,m; r)
c1 = Enc1(pk1, r; ρ1)
c2 = Enc2(pk2, r; ρ2)

 , (2)
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and where pk1 and pk2 are public keys generated via KGen1 and KGen2 (respectively), and
where hk is generated via HGen.

As for the public-coin chameleon hash function, we use the framework of Bellare and Ris-
tov [BR14] which is based on so-called Sigma-protocols. Below, we first define the complexity
assumptions on which we build, and later detail two concrete instantiations (the first one in the
random oracle model and the second one in the standard model).

4.4.1 Hardness Assumptions

We review the main complexity assumptions on which our instantiations are based. In what
follows, let G be a group with prime order q and with generator G.

Discrete Logarithm assumption. Let g←$ G and x←$ Zq. We say that the Discrete
Logarithm (DL) assumption holds in G if it is computationally hard to find x ∈ Zq given
y = gx ∈ G.

Decisional Diffie-Hellman assumption. Let g1, g2←$ G and x1, x2, x←$ Zq. We say that
the Decisional Diffie-Hellman (DDH) assumption holds in G if the following distributions are
computationally indistinguishable: (G, g1, g2, g

x1
1 , gx22 ) and (G, g1, g2, g

x
1 , g

x
2 ).

Symmetric External Diffie-Hellman assumption. Let G1, G2, GT be groups of prime
order q and let e : G1 × G2 → GT be a non-degenerate, efficiently computable, bilinear map.
The Symmetric External Diffie-Hellman (SXDH) assumption states that the DDH assumption
holds in both G1 and G2. Such an assumption is not satisfied in case G1 = G2, but it is believed
to hold in case there is no efficiently computable mapping between G1 and G2 [Sco02, BBS04].

K-Linear assumption [Sha07, HK07]. Let K ≥ 1 be a constant, and let g1, . . . , gK+1←$ G
and x1, . . . , xK ←$ Zq. The K-linear assumption holds in G if the following distributions

are computationally indistinguishable: (G, gx11 , . . . , gxKK , g
xK+1

K+1 ) and (G, gx11 , . . . , gxKK , g
∑K
i=1 xi

K+1 ).
Note that for K = 1 we obtain the DDH assumption, and for K = 2 we obtain the so-called
Linear assumption [Sha07].

In what follows we assume that the K-linear assumption holds in both G1 and G2, which is
the case for symmetric pairings provided that K ≥ 2. For K = 1 we slightly abuse notation, and
assume that the SXDH assumption holds instead (although that requires asymmetric pairings).

4.4.2 Random Oracle Model Instantiation

For concreteness, we focus here on a specific construction relying on the DDH assumption and
on the Sigma-protocol due to Schnorr [Sch91]; similar constructions can be obtained based on
the RSA assumption, on Quadratic Residuosity, and on Factoring, using the Sigma protocols
due to Guillou-Quisquater [GQ88], Fiat-Shamir [FS86], Ong-Schnorr [OS90], Okamoto [Oka92],
and Fischlin and Fischlin [FF02].

Public-Coin Hash: Let G be a group with prime order q and with generator g, where the
Discrete Logarithm problem is believed to be hard. Algorithm HGen picks a random
x←$ Zq and defines hk := gx = y and tk = x. In order to hash a message m ∈ Zq,
algorithm Hash(hk ,m; r) picks a random r←$ Zq and returns h := gr · y−m. In order to
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compute a collision, algorithm HCol(tk , (h,m, r),m′) returns r′ = r−x · (m−m′) mod q.2

Notice that Rhash =Mhash := Zq.
CPA PKE: We use the ElGamal PKE scheme [ElG85]. In order to encrypt messages in Zq

we rely on a public, onto, invertible mapping Ω : Zq → G.3 Let ĝ be a generator in G.
The public-key is pk1 = ĝx̂ = ŷ for a random secret key x̂←$ Zq, and the encryption of
r ∈ Zq is equal to c1 := (c1

1, c
2
1) = (ĝρ1 , ŷρ1 · Ω(r)) for a random ρ1←$ Zq.

CCA PKE: We use the PKE scheme due to Cramer and Shoup [CS98]. In order to en-
crypt messages in Zq we rely on the same mapping Ω described above. Let g1, g2 be
generators in G, and let H : G3 → Zq be a standard collision-resistant hash function.

The public-key is pk2 = (g
x11
1 g

x12
2 , g

x21
1 g

x22
2 , g

x31
1 g

x32
2 ) = (y1, y2, y3) for a random secret key

(x1
1, x

1
2, x

2
1, x

2
2, x

3
1, x

3
2)←$ Z6

q , and the encryption of r ∈ Zq is equal to c2 := (c1
2, c

2
2, c

3
2,

c4
2) = (gρ21 , g

ρ2
2 , y

ρ2
3 · Ω(r), yρ21 · y

ρ2·t
2 ) for a random ρ2←$ Zq and with t = H(c1

2, c
2
2, c

3
2).

NIZK: We use the Fiat-Shamir heuristic [FS86].4 Let G : {0, 1}∗ → Zq be a hash function
modeled as a random oracle. The language of Eq. (2) boils down to prove knowledge of
(r, ρ1, ρ2) ∈ Z3

q such that: (i) r = logg(h·ym); (ii) ρ1 = logĝ c
1
1; (iii) logg1 c

1
2 = ρ2 = logg2 c

2
2;

(iv) c4
2 = yρ21 · y

ρ2·t
2 ; (v) c2

1/c
3
2 = ŷρ1 · y−ρ23 . Notice that this is indeed sufficient, as proving

knowledge of ρ1, ρ2 implies knowledge of Ω(r) = c2
1/ŷ

ρ
1 = c3

2/y
ρ2
3 (and, in turn, Ω(r)

uniquely determines r).
The proofs in (i) and (ii) can be obtained from a Sigma-protocol for showing knowledge
of a discrete logarithm [Sch91]. The proof in (iii) can be obtained from a Sigma-protocol
for showing equality of two discrete logarithms [CP92]. The proof in (iv) and (v) can be
obtained from a Sigma-protocol for showing knowledge of a representation [Oka92].
Hence, the NIZK π has a type π := (π0, π1, π2, π3, π4) where: (i) π0 = (α, γ) = (ga, βr+a)
for random a←$ Zq and β =: G(h ·ym||α); (ii) π1 = (α1, γ1) = (ĝa1 , β1ρ1 +a1) for random
a1←$ Zq and β1 =: G(c1

1||α1); (iii) π2 = (α1
2, α

2
2, γ2) = (ga21 , ga22 , β2 · ρ2 + a2) for random

a2←$ Zq and β2 =: G(c1
2||c2

2||α1
2||α2

2); (iv) π3 = (α3, γ
1
3 , γ

2
3) = (y

a13
1 · y

a23
2 , β3 · ρ2 + a1

3, β3 ·
ρ2 · t + a2

3), for random a1
3, a

2
3←$ Zq and β3 = (c4

2||y1||y2||α3); (v) π4 = (α4, γ
1
4 , γ

2
4) =

(ŷa
1
4 · ya

2
4

3 , β4 · ρ1 + a1
4,−β4 · ρ2 + a2

4), for random a1
4, a

2
4←$ Zq and β4 = (c2

1/c
3
2||ŷ||y3||α4).5

Putting together the above constructions we obtain the following result.

Corollary 1. Let G be a group with prime order q. Under the DDH assumption in G there
exists a secret-coin chameleon hash function satisfying enhanced collision resistance in the ROM,
such that the hash value consists of a single element of G, whereas the check value consists of
12 elements of G plus 7 elements of Zq.

4.4.3 Standard Model Instantiation

We give an instantiation based on the K-Linear assumption.
Let G1, G2, GT be groups of prime order q and let e : G1 ×G2 → GT be a non-degenerate,

efficiently computable, bilinear map. Before describing the ingredients, we briefly recall the

2For readers familiar with [BR14], the hashing algorithm corresponds to the (strong) HVZK simulator and
the collision-finding algorithm corresponds to the strong prover of the underlying Sigma-protocol.

3As observed in [CPP06] relying on such an encoding might be computationally expensive; we can adopt the
same technique as in [CPP06] for obtaining an encoding-free solution.

4It might seem that using the construction of Dodis et al. [DHLW10] for obtaining a tSE NIZK in the ROM
is an overkill, as the Fiat-Shamir heuristic directly yields a full-fledged simulation-sound extractable NIZK.
However, the Fiat-Shamir transform is only known to satisfy a weaker form of extractability [FKMV12] which
is insufficient for our application. Alternatively, we could use Fischlin’s transformation [Fis05], but this would
probably result in longer proofs.

5For simplicity, we omit the description of the verification algorithm.
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Groth-Sahai [GS08] proof system for showing multi-exponentiation equations. The CRS consists
of vectors ~u1, . . . ~uK , ~u such that ~ui = (u0, 1, . . . , 1, ui, 1, . . . , 1) ∈ GK+1

1 , where u0, u1, . . . , uK
are randomly chosen in G∗1 and ~u is randomly chosen in the span of (~u1, . . . , ~uK).

Consider an equation of type g̃0 = g̃ϕ1
1 ·, · · · , ·g̃

ϕN
N , where g̃0, g̃1, . . . , g̃N ∈ G2 are constants

and ϕ1, . . . , ϕN ∈ Zq are variables. To generate a proof one first commits to all the variables one
by one; in particular, to commit to ϕi ∈ Zq, we sample ~si = (s1

i , . . . , s
K
i )←$ ZKq and compute

~ψi := ~uϕ
∏K
j=1 ~u

sji
j ∈ GK+1

1 (where vector multiplication is defined component-wise). Hence,

we return the proof elements πj =
∏N
i=1 g̃

sji
i ∈ G2 for j ∈ [K]. In order to verify a proof

π = (~ψ1, . . . , ~ψN , π1, . . . , πK), we check that

N∏
i=1

ê(~ψi, g̃i) = ê(~u, g̃0)
K∏
j=1

~uj · πj ,

where ê : GK+1
1 × G2 → GK+1

T , such that ê((a1, . . . , aK+1), b) := (e(a1, b), . . . , e(aK+1, b)), is a
bilinear map.

Public-Coin Hash: We use the same public-coin chameleon hash function described in the
previous section, based on the DL assumption in G2 (which is implied by both the SXDH
assumption and the DLIN assumption). Recall that Rhash =Mhash := Zq, whereas G2 is
the output range of the hash function.

CPA PKE: We use the Linear ElGamal PKE scheme, introduced by Boneh, Boyen and
Shacham [BBS04], which is based on the K-Linear assumption. Let Ω be as above.
At key generation we sample a random generator ĝK+1 ∈ G2, and, for all i ∈ [K], define

ĝi := ĝ
1/x̂i
K+1 for random x̂i ∈ Zq; the public key is pk1 = (ĝ1, . . . , ĝK+1), and the secret key

is (x̂1, . . . , x̂K). The encryption of r ∈ Zq is equal to c1 = (c1
1, . . . , c

K
1 , c

K+1
1 ) such that

ci1 := ĝ
ρi1
i for random ρi1←$ Zq and for all i ∈ [K], and cK+1

1 := Ω(r) · ĝ
∑K
i=1 ρ

i
1

K+1 .
CCA PKE: We use the Linear Cramer-Shoup PKE scheme, introduced by Shacham [Sha07],

which is based on the K-Linear assumption. Let H : GK+2
2 → Zq be a collision-resistant

hash function. At key generation we sample random generators g1, . . . , gK+1 ∈ G2, and
random exponents xji ∈ Zq for all i ∈ [K + 1] and for all j ∈ [3]. We then compute:

y1
1 := g

x11
1 g

x12
2 y1

2 := g
x21
1 g

x22
2 y1

3 := g
x31
1 g

x32
2

y2
1 := g

x11
1 g

x13
3 y2

2 := g
x21
1 g

x23
3 y2

3 := g
x31
1 g

x33
3

...
...

...

yK1 := g
x11
1 g

x1K+1

K+1 yK2 := g
x21
1 g

x2K+1

K+1 yK3 := g
x31
1 g

x3K+1

K+1 ,

and return public key pk2 := (g1, . . . , gK+1, y
1
1, . . . , y

1
K , y

2
1, . . . , y

2
K , y

3
1, . . . , y

3
K) with cor-

responding secret key (x1
1, . . . , x

1
K+1, x

2
1, . . . , x

2
K+1, x

3
1, . . . , x

3
K+1) ∈ Z3K+3

q . In order to

encrypt r ∈ Zq one samples ρ1
2, . . . , ρ

K
2 ←$ Zq and returns a ciphertext:

c2 := (c1
2, . . . , c

K
2 , c

K+1
2 , cK+2

2 , cK+3
2 )

:=

(
g
ρ12
1 , . . . , g

ρK2
K , g

∑K
i=1 ρ

i
2

K+1 ,Ω(r) ·
K∏
i=1

(yi3)ρ
i
2 ,

K∏
i=1

(yi1 · (yi2)t)ρ
i
2

)
,

with t := H(c1
2, . . . , c

K+2
2 ). Observe that for K = 1 we obtain exactly the Cramer-Shoup

PKE scheme described in the previous section.
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NIZK: We use the Groth-Sahai proof system [GS08]. In order to prove knowledge of a
witness (r, ρ1, ρ2) for ((c1, pk1), (hk , h,m), (c2, pk2)) ∈ LCH we use a system of multi-
exponentiation equations:

h · ym = gr

ci1 = ĝρ
i
1 ∀i ∈ [K]

ci2 = g
ρi2
i ∀i ∈ [K]

cK+1
2 = g

∑K
i=1 ρ

i
2

K+1

cK+3
2 =

K∏
i=1

(yi1 · (yi2)t)ρ
i
2

cK+1
1 /cK+2

2 = ĝ
∑K
i=1 ρ

i
1

K+1 ·
K∏
i=1

(yi3)−ρ
i
2 .

This corresponds to a system of 2K + 4 equations with witness (r, ρ1
1, . . . , ρ

K
1 , ρ

1
2, . . . , ρ

K
2 ),

and hence using the Groth-Sahai proof system we obtain that the proof π consists of 2K+1
commitments (each containing K + 1 elements of G1) and 2K2 + 4K proof elements (in
G2).

Putting together the above constructions we obtain the following result.

Corollary 2. Let G1,G2,GT be pairing based groups, and let K ≥ 1. Under the K-Linear
assumption there exists a secret-coin chameleon hash function satisfying enhanced collision re-
sistance in the standard model, such that the hash value consists of a single group element,
whereas the check value consists of 4K2 + 9K + 5 group elements. In particular, the size of the
check value is 18 group elements under the SXDH assumption and 39 group elements under the
DLIN assumption.

5 Integration with Bitcoin

We start by giving a short overview of Bitcoin and its main components, in Section 5.1. Sec-
tion 5.2 contains a detailed explanation of how to integrate our framework within the Bitcoin
infrastructure. Lastly, in Section 5.3, we report on a proof-of-concept implementation developed
on top of Bitcoin core [Nak09] (initially developed by Satoshi Nakamoto).

5.1 Bitcoin Basics

Bitcoin is a peer-to-peer (P2P) electronic cash system. It has three main components, namely
the P2P network among clients, the distributed consensus, and the selection of the node re-
sponsible for creating the next block. The P2P network allows Bitcoin clients to communicate
reliably and distribute effectively transactions among all users.

The structure of the Bitcoin blockchain can be cast as a special case of the abstraction
described in Section 3.1, where a block is represented by the tuple B := 〈s, x, ctr〉. In Bitcoin,
the s value consists of the block header (minus the nonce), shown in Table 1. The value x
contains all the transactions within a block, and the value ctr is the nonce value. The hash
functions H and G used for the validation of the block are the SHA-256 hash function.6

6There is no technical justification of the double hashing design used in Bitcoin, but it is said that Satoshi
was afraid of length-attacks on Merkle-Damg̊ard derived hashes.
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A block can be identified by its hash, which consists of the result of hashing twice the block
header using SHA-256. The height of a block is its position in the blockchain starting from 0.
More blocks can have the same height as forks are possible in the blockchain. The height is not
stored in the header of a block. The miner will add only six fields in a block header for a total
of 80 bytes (see Table 1).

The rest of the block contains a list of transactions identified by their hashes. Unlike blocks,
the hash of a transaction is computed on the entire content, including everything from the
header to the input and output scripts. A bitcoin transaction specifies the input transactions
that have to be redeemed and the output addresses, along with input and output scripts.

Bitcoin proof of work. A proof of work is hard to compute but easy to verify. Its difficulty
must be adjustable and should not be linearly computable. Proof of work must behave as
a decentralized lottery. Anyone can win with a single ticket, but the probability of winning
increases as the number of tickets possessed gets higher.

Bitcoin uses a proof-of-work mechanism to implement a special lottery system where one or
more miners are selected essentially at random and can propose their blocks to be included in
the blockchain (basically providing a probabilistic solution to a variant of the Byzantine generals
problem). The nonce inside the block header is incremented until the hash of the block header
returns a number less than the target. Because the target has several leading 0’s, the hash
must have several 0’s as prefix. If the nonce is not enough, a miner can change the coinbase
transaction (there is a field in there which can take arbitrary values) and generate a new Merkle
root. Quite often however, miners simply change the timestamp. In the unlikely case that
nothing works, it is always possible to add, remove, or change the order of transactions. Bitcoin
specifies a target which we denote by D. The proof of work is successful if a miner finds a block
such that the hash of its header is smaller than D.

5.2 Integrating our Framework

Our framework proposes to replace the G function (from the blockchain abstraction of Sec-
tion 3.1) with a (enhanced collision resistant) chameleon hash function. In Bitcoin, this means
that the inner SHA-256 function is replaced by a chameleon hash function, and its output is
then used as the input to the outer SHA-256 function. The Bitcoin block header needs to be
extended to accommodate the randomness of the chameleon hash (or the hash/check pair in
case of a secret-coin chameleon hash), as shown in Table 1.

For the standard (immutable) Bitcoin operation, the only modifications necessary are for
blocks creation and verification. There are no changes on how transactions or other aspects of
the Bitcoin works. When a block is being created (i.e., mined) the miner first selects all the
transactions that will be part of the block, and then it starts to fill in the block header (with the
data from Table 1). Initially, the miner fills in the hash of the previous block header, the root
of the Merkle tree (summarizing all transactions inside the block), the timestamp of the block
creation, and the current difficulty target. Hence, it samples fresh randomness7 and computes
the chameleon hash function of the block header with the sampled randomness. The output of
the chameleon hash, together with a nonce (or a counter), is used to solve the proof-of-work of
the block. Once the proof-of-work is solved, the miner fills in the remaining fields of the block
header, i.e., the randomness and the nonce.

After the newly created block is broadcasted, the other Bitcoin nodes can verify the va-
lidity of the block by first performing the usual verifications on the transactions, and later by

7For simplicity, we describe the integration using a public-coin chameleon hash. The changes necessary for a
secret-coin chameleon hash are minimal, as suggested in Section 3.3.
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Value Description

Version (4 bytes) protocol version.

Previous block (32 bytes) the hash (twice SHA256) of the header of
the previous block.

Merkle root (32 bytes) the hash of the root of the Merkle tree
that summarizes all the transactions in the block.

Timestamp (4 bytes) approximate creation time of the block
(Unix epoch).

Difficulty target (4 bytes) difficulty target for the block.

Nonce (4 bytes) the nonce used for the proof-of-work.

Randomness the randomness used by the chameleon hash func-
tion. The size of this field depends on the function
used.

Table 1: The Redactable Bitcoin block header.

recomputing the chameleon hash using the randomness stored in the block header, and hashing
its ouput together with the nonce (via SHA-256). If the block passes all verifications, and the
resulting hash is smaller than the target difficulty, then the block is considered valid and shall
be added to the chain.

To manipulate the blocks we propose the creation of two new algorithms; one to remove
blocks from the chain and the other to replace the contents of existing blocks. To validate the
integrity of the blockchain, a verification procedure, that checks that each block header contains
the hash of the previous block header, is performed on the entire blockchain. Once a block is
modified or removed this integrity becomes compromised. In order to keep the integrity of the
chain, a hash collision for the modified block (in the case of the redaction algorithm) or for
the next block remaining on the chain (in the case of the shrink algorithm) must be computed.
The hash collision algorithm (see Definition 1) computes a new randomness value that, when
hashed together with the block header, outputs the same hash value as some other block (that
is passed as a parameter to the function). After a collision is found, the randomness value on
the block header is updated to the new computed value. As a consequence, the integrity of the
blockchain is restored, and every node on the network can verify the validity of the chain.

Proof-of-Concept Implementation. We developed a proof-of-concept implementation of
the redactable Bitcoin application, built on top of version 0.12 of Bitcoin core [Nak09]. The
algorithms to redact a block and to shrink the chain were implemented in the centralised setting,
where one special node holds the chameleon hash trapdoor key, and therefore can perform those
special operations on the blockchain.8 We implemented the chameleon hash function described
in Section 3.2 using the Bignum library of OpenSSL [Ope].

Our code was developed in the same language used in Bitcoin core (C/C++). We cre-
ated three main functions for the chameleon hash, namely GenerateKey, ChameleonHash, and
HashCollision; the first function generates the public parameters and the trapdoor key, the
second function takes a message and a random value and computes its hash. The last function
takes an inital message and its randomness and a new message; it outputs a randomness value,

8For test purposes, all the parameters of the chameleon hash function, including the trapdoor key, are hard-
coded in the redactable Bitcoin source code.

28



such that the hash of this new message and the returned randomness value is equal to the hash
of the initial message and its randomness.

uint256 SerializeHash(const CBlockHeader& header)
{

uint256 hash;
uint1024 chash;
//compute the chameleon hash of the first 76

bytes of the block header
ChameleonHash(header[0], 76,

header.RandomnessR, header.RandomnessS,
&chash);

//now compute the SHA256 of the output of the
chameleon hash with the nonce

CHash256(chash, header.nNonce, &hash);
return hash;

}

Figure 6: A simplified version of the over-
loaded SerializeHash function that com-
putes the hash of a block header.

The first step for the integration of the
chameleon hash on Bitcoin core was to extend
the CBlockHeader class, that stores the header
of a block (see Table 1). We added the mem-
bers RandomnessR and RandomnessS to the class,
each of size 128-bytes,9 that holds the two ran-
domness values required by the chameleon hash
function. To modify the computation of the hash
of a block header, we overloaded the function
SerializeHash in file hash.cpp and created a
version of this function that is called only when
a block header is passed as input, in this way,
when the same function is called to compute the
hash of different components of the protocol, such
as transactions, the correct version of the func-
tion is still called. The reason we overloaded the
function SerializeHash and not the more obvi-

ous function GetHash from the CHashWriter class is because we must have access to the header
structure before performing the hash operation, while in the GetHash function the block header
data is already serialized. A simplified version of the code is shown in Figure 6.

Next, we modified the function CreateNewBlock that is called when a block is being cre-
ated (file miner.cpp). We added the generation of fresh random values for RandomnessR and
RandomnessS and stored it in the block header. In this way, when the function SerializeHash is
called passing this block header as input, the chameleon hash is computed using the randomness
values stored in the header of the block. Before having all the Bitcoin functionality operating
in full, we need to create a new genesis block (described in file chainParams.cpp) that uses
the new block header structure and the chameleon hash function. For the integration to work
on an already existing blockchain a initialization procedure is necessary. This procedure would
have to reconstruct all the blocks in the chain (optionally already removing and/or merging
blocks) with the new block structure and using the chameleon hash function. In a production
redactable Bitcoin system this initialization procedure would be run in an MPC protocol.

For the special operations that redact and remove blocks, we implemented the methods
RedactBlock and RemoveBlock in the CChain class. The first method takes as input the height
of the block to be redacted and the new content to put in the block, and the latter takes as
input the initial and final height of a sequence of blocks to be removed.

This proof-of-concept implementation will be published as an open-source project, and its
source code will be available for download soon.

5.3 Experiments

To perform the experiments (and to not pose any risk to the Bitcoin main network) we used the
regression test network feature of Bitcoin core, where nodes can be simulated and connected
among each other creating a private test network. We measure the time of block creation against
the unmodified Bitcoin core, and the time of redacting blocks and shrinking the blockchain
(removing blocks). For the measurements, we utilize python’s function time.time() to measure

9The size of the randomness values (in bytes) can be significantly reduced if the chameleon hash is implemented
on an elliptic curve group.
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(c) Block removal.

Figure 7: Performance evaluation of the redactable blockchain. The image on the left shows a
comparison of block creation time between the redactable Bitcoin and Bitcoin core. The image
on the right shows the performance of the redact block and shrink chain algorithms.

the elapsed time from the start of the the operation until the end of the operation. We note that
we only measure the time to perform the operations in memory, and we disregard the time of
disk access operations. The block creation experiment was performed with the block difficulty
target set to 0, in this way we can precisely measure the time of the operation without the
overhead of the proof-of-work. All the transactions considered in the experiment are of type
Pay-to-PubkeyHash. The experiments were run on the hardware and software specified below.

• Intel Motherboard Server S1400SP2.
• Intel Processor Xeon E5-2430 (15M Cache,2.20 GHz, 7.20 GT/s).
• 48GB (6x8GB) RAM memory ECC 1333, DDR3.
• 2 x SSD KINGSTON SKC300S3B7A KC300 180 GB2.5 SATA III.
• 2 x 1TB HD Constellation 7200RPM.
• Ubuntu 14.04.4 LTS (GNU/Linux).
• gcc 4.9.3, Python 2.7.6.

In Figure 7a we show a comparison of the time required to create blocks in the redactable
Bitcoin versus the Bitcoin core application. We note that the overhead of the redactable Bitcoin,
due to the computation of a chameleon hash, is negligible and almost constant compared to
Bitcoin core.

In Figure 7b and 7c we show the performance of the operations of redacting one block and
removing one block from the chain, depending on the size of the block (number of transactions).
The experiment was conducted on blocks of different sizes rather than on blockchains of different
sizes because the running time of Algorithms 1 and 2 clearly are (almost) independent of the
size of the blockchain. The only relation is due to a linear search required to find the selected
block to be redacted/removed from the blockchain.

6 Conclusions

We have presented a framework to redact and compress the content of blocks in virtually any
blockchain based technology. As we have argued, there are several reasons why one could prefer
a redactable blockchain to an immutable one. Our approach is feasible, as implementing a
redactable blockchain only requires minor modifications to the current structure of the blocks,
and moreover, as our experiments showed, the overhead imposed by having a mutable blockchain
is negligible.
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